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Physicists at CERN in Geneva find the Higgs particle with unexpected characteristics 
By Jane Ellis
The properties of the newly found Higgs particle shook the foundations of modern particle physics. Although its decay properties are very similar to what was expected, the

mass at 507 GeV is far too heavy and the width far too narrow to accommodate  what is know to be the Standard Model of modern particle physics. Physicists are turning 
now to lattice gauge theorists who are trying to explain with nearly conformal gauge theories the experiments at the Large Hadron Collider.  Continued on page 11 ...

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

T

68 % CL

U=0

m
t

m
h

m
t
= 172.7 ± 2.9 GeV

m
h
= 114...1000 GeV

How to pull out the heavy Higgs particle to 507 GeV 
from the allowed oval region without violating EW 
precision data?

Nearly conformal gauge theories might work?

Requires unusual nonperturbative properties which 
can be studied on the lattice with extreme computing 
resources 

Can the lattice be transformational when we do not 
know the answer?

http://www.nytimes.com/2008/12/07/world/asia/07troops.html?hp
http://www.nytimes.com/2008/12/07/world/asia/07troops.html?hp


1.  Overview of three coordinated projects in our program
                -  SU(3) color, fundamental rep, staggered Nf=4-20
                -  sextet representation with SU(3) color 
                -  Running coupling   (new ideas, first results)

2. Chiral symmetry breaking
            - Finite volume p-regime, delta-regime, epsilon-regime 
                - Goldstone spectra and staggered CHPT
                - New results at Nf=4,8,9,12 will be presented
3.  Inside and above the conformal window  
            - Zero momentum dynamics at Nf=16,20         

4.  Conclusions and Outlook 
            - Prospects towards model building ?               
                - Can lattice studies be transformational ?
                - Is peta-scale to exa scale power needed for definitive 
                  phenomenology ?

Outline



Talk is based on published results last year: 

1.  Topology and higher dimensional representations.
          Published in JHEP 0908:084,2009. 
          e-Print: arXiv:0905.3586 [hep-lat]

2.  Nearly conformal gauge theories in finite volume.
           Phys.Lett.B681:353-361,2009. 
           e-Print: arXiv:0907.4562 [hep-lat]

3.  Chiral properties of SU(3) sextet fermions
           e-Print: arXiv:0908.2466 [hep-lat]

4.  Chiral  symmetry breaking in nearly conformal gauge theories
           e-Print: arXiv:0911.2463 [hep-lat]  posted 

5.  Calculating the running coupling in strong electroweak models          
           e-Print: arXiv:0911.2934 [hep-lat] 
           

and some unpublished new analysis



USQCD got into BSM studies ~3 yrs ago
(early work on supersymmetry, top-Higgs physics, ...)

Kudos to Yale group for stimulating lattice 
interest in conformality

Now the genie is out of the bottle



Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 16/19

Phase diagram of TWO projects as nearly conformal 
gauge theories in flavor-color space ?

Project 1:
Fundamental rep Nf=4,8-12,14,16,20 
flavors and three colors with 
staggered fermions. 

Project 2:
2-index symmetric rep with Nf=2 
flavors and three colors with overlap 
chiral fermions              staggered 
(will be briefly discussed here, but 
quenched results with interesting 
topology are published and full 
dynamical simulations are running)
Our unified GPU/MPI code ready
near the conformal window (walking):  
Higgs phenomenology with nearly 
vanishing beta function 

Phenomenology goal: nearly conformal gauge 
theory with minimal realization of the 
composite Higgs mechanism 
Consistent with ElectroWeak Precision Data ? 

They are fun lattice field theories anyway!

Unparticle world



Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 15/19

Project 3: Important to complement the test of chirality with running 
coupling and beta function

like QCD far below 
conformal window

How to reach walking scale 
which is wanted for several 
reasons in BSM?

would be Banks-Zaks FP

Fundamental rep with 
Nf=4,8,9 should be similar

Nf=10,11,12,14,16,20 under 
continued study 

Nf=12 controversial

Is 2-index symmetric rep 
nearly conformal?

DeGrand et al. (conformal?)
our staggered simulations 
disagree with conformal 
phase

important in model building

Nf=16 inside 
weak coupling



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Theory space and conformal windows

Project 2: 2-index 
symmetric rep (sextet)
N=3 colors and Nf=2 flavors
dynamical overlap

Banks-Zaks Fixed Point

BZ FP

We only run with N=3 colors 

Project 1: in fundamental rep 
with N=3 colors with 
Nf=4,8,9,10,11,12,14,16,20 flavors
dynamical staggered

Predictions from Schwinger-

Dyson approximations   
not reliable

adjoint rep

2-index antisymmetric

Running on CPU clusters
and GPU clusters
Very demanding
Unified code 

Important early work by Bardeen, 
Leung, Love on Schwinger-Dyson    



GPU Hardware

Tesla 1060

Flops: single 1 Tflop, double 80 Gflops

Memory 4GB, Bandwidth 102 GBs-1

230 Watts, $1200

Tesla 1070

Flops: single 4 Tflops, double 320 Gflops

Memory 16GB, Bandwidth 408 GBs-1

900 Watts, $8000

GTX 280

Flops: single 1 Tflop, double 80 Gflops

Memory 1GB, Bandwidth 141 GBs-1

230 Watts, $350

Wednesday, February 25, 2009

We are supported by the Wuppertal hardware/software infrastructure

Zoltan Fodor
Kalman Szabo
Sandor Katz

CUDA code:
Kalman Szabo
Sandor Katz

also USQCD CPU 
cluster supportUCSD Tesla cluster

ARRA funded by DOE
waiting for Fermi cards 
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Goldstone dynamics is different in each regime 
We study            -regimes (RMT) 
and p-regime (probing chiral loops)
complement each other 
interpretation of rotator levels in          limit:

Chiral regimes to identify in theory space:

δ  and ε

mq → 0

Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,

11

mq = 0

Veff: chiral condensate in flavor space
arbitrary orientation of condensate

mq ≠ 0

tilted condensate

Not to misidentify rotator gaps
as evidence of chirally symmetric 
phase !!



One-loop expansion in our analysis of p-regime:

chiral p-regime
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

�
1 − M2

8π2Nf F2 ln
�
Λ3

M

��
, (11)

Fπ = F
�
1 +

Nf M2

16π2F2 ln
�
Λ4

M

��
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
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where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
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M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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Note Nf scaling of pion mass!
warning: 2-loop ~Nf^2  (Bijnens)

λ = MLs

We use staggered action with stout smearing
Taste breaking included in staggered perturbation  theory!
structure changing as Nf grows

Leutwyer, Gasser, P. Hasenfratz, 
Niedermayer, Hansen, Neuberger, ...



fundamental SU(3) color representation using finite volume

analysis. The staggered fermions are deployed with a special

6-step exponential (stout) smearing procedure [47] in the lattice

action to reduce well-known cutoff effects with taste breaking

in the Goldstone spectrum. The presence of taste breaking re-

quires a brief explanation of how staggered chiral perturbation

theory is applied in our analysis. The important work of Lee,

Sharpe, Aubin and Bernard [48–50] is closely followed in the

discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [48], the spontaneous

breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to

15 Goldstone modes, described by fields φi. These can be orga-

nized into an S U(4) matrix

Σ(x) = exp

�
i
φ√
2F

�
, φ =

15�

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and

the normalization Ta =
�
ξµ, iξµ5, iξµν, ξ5

�
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)

χ =
F

2

4
Tr(∂µΣ∂µΣ†) −

1

2
B mq F

2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-

nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-

panding the chiral Lagrangian in powers of φ one finds 15 de-

generate pions with masses given by

M
2

π = 2Bmq

�
1 + O(mq/ΛTC)

�
. (3)

The leading order term is the tree-level result, while the cor-

rections come from loop diagrams and from higher order terms

in the chiral Lagrangian. The addition of a
2L(6)

χ breaks chiral

symmetry and lifts the degeneracy of the Goldstone pions. Cor-

rection terms are added to Eq. (3) which becomes

M
2

π = C(Ta) ·a2Λ4

TC
+2Bmq
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1 + O(mq/ΛTC) + O(a

2Λ2

TC
)
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(4)

where the representation dependent C(Ta) is a constant of order

unity. Contributions proportional to a
2

are due to L(6)

χ , and lead

to massive Goldstone pions even in the mq → 0 chiral limit.

The only exception is the pion with flavor ξ5 which remains

massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)

χ without deriva-

tives, defining the potentialV(6)

χ , is invariant under flavor S O(4)

transformations and gives rise to the a
2

term in M
2

π. Terms in

L(6)

χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a
2
m and a

4
. The taste breaking potential is given by
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The six unknown coefficients Ci are all of size Λ6

TC
.

In the continuum, the pions form a 15-plet of flavor S U(4),

and are degenerate. On the lattice, states are classified by the

symmetries of the transfer matrix and the Goldstone pions fall

into 7 irreducible representations: four 3-dimensional represen-

tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional

representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion

masses are given by

Mπ(Ta)
2 = 2Bmq + a

2∆(Ta) + O(a
2
mq) + O(a

4
) , (6)

with ∆(Ta) ∼ Λ4

TC
arising fromV(6)

χ . SinceV(6)

χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)
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In the chiral limit at finite lattice spacing the lattice irreducible

representations with flavors ξi and ξ4 are degenerate, those with

flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-

erate as well. No predictions can be made for the ordering or

splittings of the mass shifts. We also cannot predict the sign

of the shifts, although our simulations indicate that they are

all positive with the exponentially smeared staggered action we

use. This makes the existence of an Aoki phase [48] unlikely.

The method of [48] has been generalized in a nontrivial way

to the Nf > 4 case [49, 50] which we adopted in our calcula-

tions with help from Bernard and Sharpe. The procedure cannot

be reviewed here but it will be used in the interpretation of our

Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra

and correlators. For a lattice size L
3

s
× Lt in euclidean space and

in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1

select the the p-regime, in analogy with low momentum count-

ing [51, 52].

2

fundamental SU(3) color representation using finite volume

analysis. The staggered fermions are deployed with a special

6-step exponential (stout) smearing procedure [46] in the lattice

action to reduce well-known cutoff effects with taste breaking

in the Goldstone spectrum. The presence of taste breaking re-

quires a brief explanation of how staggered chiral perturbation

theory is applied in our analysis. The ground breaking work of

Lee, Sharpe, Aubin and Bernard [47–49] is closely followed in

the discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [47], the spontaneous

breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to

15 Goldstone modes, described by fields φi. These can be orga-
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Tr(∂µΣ∂µΣ†) −

1

2
B mq F

2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-

nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-

panding the chiral Lagrangian in powers of φ one finds 15 de-
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M
2

π = 2Bmq

�
1 + O(mq/ΛTC)

�
. (3)

The leading order term is the tree-level result, while the cor-
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where the representation dependent C(Ta) is a constant of order

unity. Contributions proportional to a
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are due to L(6)

χ , and lead

to massive Goldstone pions even in the mq → 0 chiral limit.

The only exception is the pion with flavor ξ5 which remains

massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)

χ without deriva-

tives, defining the potentialV(6)

χ , is invariant under flavor S O(4)

transformations and gives rise to the a
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term in M
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π. Terms in

L(6)

χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a
2
m and a
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The six unknown coefficients Ci are all of size Λ6

TC
.

In the continuum, the pions form a 15-plet of flavor S U(4),

and are degenerate. On the lattice, states are classified by the

symmetries of the transfer matrix and the Goldstone pions fall

into 7 irreducible representations: four 3-dimensional represen-

tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional

representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion

masses are given by

Mπ(Ta)
2 = 2Bmq + a

2∆(Ta) + O(a
2
mq) + O(a

4
) , (6)

with ∆(Ta) ∼ Λ4

TC
arising fromV(6)

χ . SinceV(6)

χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
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(C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
16

f 2
(2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible

representations with flavors ξi and ξ4 are degenerate, those with

flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-

erate as well. No predictions can be made for the ordering or

splittings of the mass shifts. We also cannot predict the sign

of the shifts, although our simulations indicate that they are

all positive with the exponentially smeared staggered action we

use. This makes the existence of an Aoki phase [47] unlikely.

The method of [47] has been generalized in a nontrivial way

to the Nf > 4 case [48, 49] which we adopted in our calcula-

tions with help from Bernard and Sharpe. The procedure cannot

be reviewed here but it will be used in the interpretation of our

Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra

and correlators. For a lattice size L
3

s
× Lt in euclidean space and

in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1

select the the p-regime, in analogy with low momentum count-

ing [50, 51].
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fundamental SU(3) color representation using finite volume

analysis. The staggered fermions are deployed with a special

6-step exponential (stout) smearing procedure [46] in the lattice

action to reduce well-known cutoff effects with taste breaking

in the Goldstone spectrum. The presence of taste breaking re-

quires a brief explanation of how staggered chiral perturbation

theory is applied in our analysis. The ground breaking work of

Lee, Sharpe, Aubin and Bernard [47–49] is closely followed in

the discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [47], the spontaneous

breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to

15 Goldstone modes, described by fields φi. These can be orga-

nized into an S U(4) matrix

Σ(x) = exp

�
i
φ√
2F

�
, φ =

15�

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and

the normalization Ta =
�
ξµ, iξµ5, iξµν, ξ5

�
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)

χ =
F

2

4
Tr(∂µΣ∂µΣ†) −

1

2
B mq F

2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-

nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-

panding the chiral Lagrangian in powers of φ one finds 15 de-

generate pions with masses given by

M
2

π = 2Bmq

�
1 + O(mq/ΛTC)

�
. (3)

The leading order term is the tree-level result, while the cor-

rections come from loop diagrams and from higher order terms

in the chiral Lagrangian. The addition of a
2L(6)

χ breaks chiral

symmetry and lifts the degeneracy of the Goldstone pions. Cor-

rection terms are added to Eq. (3) which becomes

M
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π = C(Ta) ·a2Λ4

TC
+2Bmq
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1 + O(mq/ΛTC) + O(a

2Λ2

TC
)
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(4)

where the representation dependent C(Ta) is a constant of order

unity. Contributions proportional to a
2

are due to L(6)

χ , and lead

to massive Goldstone pions even in the mq → 0 chiral limit.

The only exception is the pion with flavor ξ5 which remains

massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)

χ without deriva-

tives, defining the potentialV(6)

χ , is invariant under flavor S O(4)

transformations and gives rise to the a
2

term in M
2

π. Terms in

L(6)

χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a
2
m and a

4
. The taste breaking potential is given by

−V(6)

χ = C1Tr(ξ5Σξ5Σ†)

+C2
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The six unknown coefficients Ci are all of size Λ6

TC
.

In the continuum, the pions form a 15-plet of flavor S U(4),

and are degenerate. On the lattice, states are classified by the

symmetries of the transfer matrix and the Goldstone pions fall

into 7 irreducible representations: four 3-dimensional represen-

tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional

representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion

masses are given by

Mπ(Ta)
2 = 2Bmq + a

2∆(Ta) + O(a
2
mq) + O(a

4
) , (6)

with ∆(Ta) ∼ Λ4

TC
arising fromV(6)

χ . SinceV(6)

χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
16

f 2
(C1 +C2 +C3 + 3C4 +C5 + 3C6) , (8)

∆(ξµ5) =
16

f 2
(C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
16

f 2
(2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible

representations with flavors ξi and ξ4 are degenerate, those with

flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-

erate as well. No predictions can be made for the ordering or

splittings of the mass shifts. We also cannot predict the sign

of the shifts, although our simulations indicate that they are

all positive with the exponentially smeared staggered action we

use. This makes the existence of an Aoki phase [47] unlikely.

The method of [47] has been generalized in a nontrivial way

to the Nf > 4 case [48, 49] which we adopted in our calcula-

tions with help from Bernard and Sharpe. The procedure cannot

be reviewed here but it will be used in the interpretation of our

Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra

and correlators. For a lattice size L
3

s
× Lt in euclidean space and

in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1

select the the p-regime, in analogy with low momentum count-

ing [50, 51].
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Nf=4 NLO chiral analysis in p-regime:
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We take the the unrooted, mass-degenerate case, with NF staggered fields.
(So the “4+4” case is NF = 2.) In the taste-vector (V ) channel, there are
NF − 1 degenerate pions with mass mπV

, and a single η′

V with mass

m2
η′

V
= m2

πV
+ NF a2δ′V , (1)

The taste-axial-vector (A) case is just V → A. Similarly, in the taste-singlet
channel, we have NF − 1 degenerate pions with mass mπI

, and a single η′

I

with mass

m2
η′

I
= m2

πI
+ NF

4m2
0

3
, (2)

where I use the definition of m0 given in the Lagrangian of eq. (17) of Ref. [1].
Then eq. (75) Ref. [1] becomes

(m1−loop

π+
5

)2

2m
= µ

{
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16π2f 2
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)

+
16µ

f 2
(2L8 − L5) (2m) +

32µ

f 2
(2L6 − L4) (4NFm) + a2C

}

. (3)

The analytic 2L6−L4 term gives sea-quark dependence (coming from a trace
over the mass matrix), and the 4NF counts the number of sea quarks. Of
course, all LECs also have hidden NF dependence. The rooted 3-flavor case,
(eq. (75) or (76) of Ref. [1] in the degenerate limit) can be obtained by
NF → 3/4, where the factor of 1/4 is just the replica trick for rooting.

For fπ, eq. (27) in Ref. [2] becomes
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}

, (4)

where the 1
16

∑

B is the average over tastes. This term comes from a mixed
meson (valence-sea) loop, and the 4NF factor in front again just counts the
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Nf=8 staggered NLO 
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Nf=8 NLO chiral analysis in p-regime:
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Nf=9 NLO chiral analysis in p-regime:
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Testing rooting (nothing unusual happens)
(useful for rooted sextet code, complete and running with Nf=2) 
Provides additional independent info on chiral condensate trend
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Nf=12 NLO chiral analysis in p-regime:
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Some features of Nf=4,8,9,12 runs:

Nearly degenerate Goldstone spectra
stout action performs very well

Chiral condensate measured in F unit
is enhanced as Nf increases
Nf=4    B/F = 53(6)    
Nf=8    B/F = 157(17)
Nf=9    B/F = 125(19)
Nf=12   B/F = 209(64)
large errors, preliminary, limited to Ls=32!
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Random Matrix Theory tests in epsilon regime:
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Figure 4: From simulations at N f = 4 the first row shows the approach to quartet degeneracy of the spectrum as β increases. The second row shows the integrated

distribution of the two lowest quartets averaged. The solid line compares this procedure to RMT with N f = 4.

of the lowest eigenvalues are identical to those of random ma-

trix theory, a theory of large matrices obeying certain symme-

tries [57–59]. To connect with RMT, the eigenvalues and quark

mass are rescaled as z = λΣcondV and µ = mqΣcondV , and the

eigenvalue distributions also depend on the topological charge

ν and the number of quark flavors Nf . RMT is a very useful tool

to calculate analytically all of the eigenvalue distributions. The

eigenvalue distributions in various topological sectors are mea-

sured via lattice simulations, and via comparison with RMT, the

value of the condensate Σcond can be extracted.

After we generate large thermalized ensembles, we calculate

the lowest twenty eigenvalues of the Dirac operator using the

PRIMME package [60]. In the continuum limit, the staggered

eigenvalues form degenerate quartets, with restored taste sym-

metry. The first row of Fig. 4 shows the change in the eigen-

value structure for Nf = 4 as the coupling constant is varied. At

β = 3.6 grouping into quartets is not seen, the pions are notice-

ably split, and staggered perturbation theory is just beginning to

kick in. At β = 3.8 doublet pairing appears and at β = 4.0 the

quartets are nearly degenerate. The Dirac spectrum is collapsed

as required by the Banks-Casher relation. In the second row we

show the integrated distributions of the two lowest eigenvalue

quartet averages,

� λ

0

pk(λ�)dλ�, k = 1, 2 (15)

which is only justified close to quartet degeneracy. All low

eigenvalues are selected with zero topology. To compare with

RMT, we vary µ = mqΣcondV until we satisfy

�λ1�sim

m
=
�z1�RMT

µ
, (16)

where �λ1�sim is the lowest quartet average from simulations and

the RMT average �z�RMT depends implicitly on µ and Nf . With

this optimal value of µ, we can predict the shapes of pk(λ) and

their integrated distributions, and compare to the simulations.

The agreement with the two lowest integrated RMT eigenvalue

shapes is excellent for the larger β values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05

in
te

g
ra

te
d
 d

is
tr

ib
u
ti
o
n

a !

Nf = 8

" = 1.40
a mq = 0.001

24
4

Figure 5: The solid lines compare the integrated distribution of the two lowest

quartet averages to RMT predictions with N f = 8.

The main qualitative features of the RMT spectrum are very

similar in our Nf = 8 simulations as shown in Fig. 5. One

marked quantitative difference is a noticeable slowdown in re-

sponse to change in the coupling constant. As β grows the

recovery of the quartet degeneracy is considerably delayed in

comparison with the onset of p-regime Goldstone dynamics.

Overall, for the Nf = 4, 8 models we find consistency between

the p-regime analysis and the RMT tests. Earlier, using Asqtad

fermions at a particular β value, we found agreement with RMT

even at Nf = 12 which indicated a chirally broken phase [20].

Strong taste breaking with Asqtad fermion leaves the quartet

averaging in question and the bulk pronounced crossover of the

Asqtad action as β grows is also an issue. Currently we are

investigating the RMT picture for Nf = 9, 10, 11, 12 with our
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distribution of the two lowest quartets averaged. The solid line compares this procedure to RMT with N f = 4.

of the lowest eigenvalues are identical to those of random ma-

trix theory, a theory of large matrices obeying certain symme-

tries [57–59]. To connect with RMT, the eigenvalues and quark

mass are rescaled as z = λΣcondV and µ = mqΣcondV , and the

eigenvalue distributions also depend on the topological charge

ν and the number of quark flavors Nf . RMT is a very useful tool

to calculate analytically all of the eigenvalue distributions. The

eigenvalue distributions in various topological sectors are mea-

sured via lattice simulations, and via comparison with RMT, the

value of the condensate Σcond can be extracted.

After we generate large thermalized ensembles, we calculate

the lowest twenty eigenvalues of the Dirac operator using the

PRIMME package [60]. In the continuum limit, the staggered

eigenvalues form degenerate quartets, with restored taste sym-

metry. The first row of Fig. 4 shows the change in the eigen-
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show the integrated distributions of the two lowest eigenvalue

quartet averages,

� λ

0

pk(λ�)dλ�, k = 1, 2 (15)

which is only justified close to quartet degeneracy. All low

eigenvalues are selected with zero topology. To compare with

RMT, we vary µ = mqΣcondV until we satisfy

�λ1�sim

m
=
�z1�RMT

µ
, (16)
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this optimal value of µ, we can predict the shapes of pk(λ) and

their integrated distributions, and compare to the simulations.
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The main qualitative features of the RMT spectrum are very

similar in our Nf = 8 simulations as shown in Fig. 5. One

marked quantitative difference is a noticeable slowdown in re-

sponse to change in the coupling constant. As β grows the

recovery of the quartet degeneracy is considerably delayed in

comparison with the onset of p-regime Goldstone dynamics.

Overall, for the Nf = 4, 8 models we find consistency between

the p-regime analysis and the RMT tests. Earlier, using Asqtad

fermions at a particular β value, we found agreement with RMT

even at Nf = 12 which indicated a chirally broken phase [20].

Strong taste breaking with Asqtad fermion leaves the quartet

averaging in question and the bulk pronounced crossover of the

Asqtad action as β grows is also an issue. Currently we are

investigating the RMT picture for Nf = 9, 10, 11, 12 with our
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Dirac spectrum 
Integrated eigenvalue distrubutions of RMT
--> quartet degeneracy          
--> RMT



  First conclusions on our Nf sequence:

  Nf=4,8,9,12 all appear to be in chirally broken phase according
  to several tests:

  1. chiral Goldstone dynamics
  2. nonvanishing condensate in chiral limit
  3. rho-A1 parity doublet splitting close to chiral limit
  4. epsilon regime and RMT
  5. string tension and running coupling from potential/force ?
  
  Important warning is appropriate related to the size of F*L



  Preliminary indications on our Nf=2 sextet model:
  It appears to be in chirally broken phase according
  to several tests like the ones discussed earlier:

  1. chiral Goldstone dynamics
  2. nonvanishing condensate in chiral limit
  3. rho-A1 parity doublet splitting close to chiral limit ?
  4. epsilon regime and RMT ?
  5. string tension and running coupling from potential/force ?
  
  More favorable to reach large enough  F*L values



El =
1

2θ
l(l + 2) with l = 0,1,2,...    rotator spectrum for SU(2)

with θ = F2L3
s (1+

C(N f = 2)
F2L2

s

+O(1 / F 4L4
s ))   (P. Hasenfratz and F. Niedermayer)

 there is  overall factor 
N 2

f −1
N f

 for arbitrary N f

C(N f = 2) = 0.45  expected to grow with N f

At FLs = 0.8  the correction is 70% and grows with N f

When expansion collapses in δ − regime, the p-regime analysis needs more scrutiny 

When is F*L  large enough?
This can be quantified

(epsilon, delta and p regimes are all connected)

Cross checks from several running coupling schemes is important 



A new method of calculating the running coupling constant
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Figure 1: Wilson loop defined on the latticized space-time box. T0, L0 and T , R represent the size of the box

and the Wilson loop in the temporal and spatial directions, respectively. a is the lattice spacing.

L0/a =

k

R/L0

Figure 2: Values of k for several values of R/L0 and L0/a (colored squares whose L0/a is indicated by the
numbers with the same color). The value of k in the continuum limit is also shown as a solid curve.

originate from zero-mode configurations degenerate with the vacuum on the periodic torus. This

contribution is calculated in Ref. [16], and we use the result from that paper. After evaluating the

summation in Eq. (2.6) 1, one can find that k only depends on the value of R/L0. The value of k as

a function of R/L0 in the continuum limit is shown in Fig. 2. We also did similar calculations of k

in the case of discrete space-time, and plotted them for several values of L0/a and R/L0. Note that

the continuum limit actually exists (i.e., k is finite in the limit of L0/a→ !) and that the conver-

gence to continuum value is faster for larger values of R/L0. Once the value of k is obtained, the

1Detailed calculation of the factor k can be found in [17].
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Running gauge coupling from RG on large Wilson loops

two groups: our group and Bilgici et al.  (generalization 
from earlier work) 

problem with Bilgici et al: 
implementation was not independent of 
Schrodinger functional method 
(corrected now)
Important that our implementation is

define renormalized coupling from second derivative of Wilson 
loops running with L if R/L is kept fixed: 

k is geometric factor (cutoff dependent on lattice) defined from 
tree level relation with the bare coupling 

Lattice implementation requires the study of the step function 
together with its cutoff dependence

Useful alternative to Schrodinger functional?

Wilson loops could be replaced by Polyakov loop correlators

g0

A new method of calculating the running coupling constant

study as a test to see the effectiveness of our new scheme for the calculation of the running cou-

pling. Discussion on the numerical results are also given in Section 6. Section 7 summarizes our

conclusions.

2. Wilson Loop Scheme

In this section, we give the definition of the new renormalization scheme, the “Wilson loop

scheme”, for the running coupling, and show how to calculate it on the lattice. Let us start with

general features in the renormalization of the coupling constant. Consider an amplitude A whose

tree-level contribution is proportional to g20 (where g0 is the bare coupling constant):

Atree = kg20. (2.1)

Here, k is a certain coefficient which is a function of all the parameters of the theory except g0.

Then, we denote the ratio of the fully non-perturbative value of the amplitude A to its tree-level

value as Z(µ):

ANP(µ) = Z(µ)Atree, (2.2)

where µ is the scale at which the amplitude A is defined. By using Eq. (2.1), the right hand side of

the above equation can be rewritten as Z(µ)g20 k, and the combination Z(µ)g20 can be identified as

the renormalized coupling at the scale µ . So the renormalized coupling, g(µ), can be expressed as

follows:

g2(µ) =
ANP(µ)

k
. (2.3)

Thus, any amplitude with a tree-level value proportional to g20 can be used to define the renormal-

ized coupling. Here, we use the following quantity:

−R2
! 2

!R!T
ln〈W (R,T ;L0,T0)〉

∣

∣

∣

∣

T=R

, (2.4)

whereW (R,T ) is the Wilson loop. The definition of the Wilson loop is graphically shown in Fig. 1.

In this figure, T0, L0, and T , R represent the size of the box and the Wilson loop in the temporal

and spatial directions, respectively, and a is the lattice spacing. From now on, for simplicity, we

consider the case of T0 = L0. At tree level in the perturbative expansion, this quantity actually is

proportional to g20, i.e.,

−R2
! 2

!R!T
ln〈W (R,T ;L0)〉

tree

∣

∣

∣

∣

T=R

= kg20, (2.5)

where k, in the case of periodic boundary condition for example, is

k = −R2
! 2

!R!T
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T=R

+ zero mode contribution. (2.6)

Here, (n0,n1,n2,n3) represents integer four-vector to define the momentum. “Zero mode contribu-

tion” in the above equation is coming from the existence of so-called “toron” contributions which
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of the box and the Wilson loop in the temporal and spatial directions, respectively; a is the

lattice spacing.
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Fig. 2. Schematic illustration of the perturbative expansion of the Wilson loop.

In the above expression we have made explicit that in the continuum limit k is a regular

function of R/L0 only. This will be proved in the next section. The remaining factor on the

right hand side of Eq. (2.4) can be evaluated on the lattice as the Creutz ratio,

χ(R̂ + 1/2; L0/a) = − ln

(

W (R̂ + 1, T̂ + 1; L0/a) W (R̂, T̂ ; L0/a)

W (R̂ + 1, T̂ ; L0/a) W (R̂, T̂ + 1; L0/a)

)
∣

∣

∣

∣

∣

T̂=R̂

, (2.5)

where T̂ ≡ T/a and R̂ ≡ R/a. The value of χ is evaluated by a Monte Carlo simulation.

The renormalized coupling constant in the Wilson loop scheme can be written as

g2
w

(

L0,
R + a/2

L0
,

a

L0

)

= (R̂ + 1/2)2 · χ(R̂ + 1/2; L0/a)/k. (2.6)

The quantity g2
w depends on three different scales, L0, R, and a; by taking the ratio to L0,

we use r ≡ (R+a/2)/L0, a/L0, and L0 as the independent parameters. Fixing r to a specific

value means fixing the renormalization scheme. The ratio a/L0 specifies the discretization

of the box, and can be removed by taking the continuum limit, a/L0 → 0. After fixing

the two dimensionless parameters r and a/L0, g2
w becomes a function of single scale, L0. In
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We first tested the method at weak coupling for large Wilson loops. Rather than simulating Wilson 
loops with Monte Carlo, we calculated (simulated) them analytically using the boosted coupling 
procedure of Lepage and McKenzie which reproduces even large Wilson loops accurately

The finite volume dependence was obtained from Urs Heller’s code who calculated the Wilson loops 
in bare perturbation theory
(thanks to Urs Heller and Paul Mackenzie for the help they provided)

testing the cutoff dependence of the 
step function and its extrapolation to 
zero lattice spacing  

(same as for Schrodinger functional)

running renormalized coupling in the 
deep UV region 

agrees well with loop prediction

beeing tested in quenched and 
dynamical simulations

Onto Monte Carlo now --> 
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FIG. 6: Continuum running for Nf = 12. Results shown for running from below the infrared fixed

point (purple triangles) are based on g2(L0) ≡ 1.6. Also shown is continuum backwards running

from above the fixed point (light blue squares), based on g2(L0) ≡ 9.0. Error bars are again purely

statistical, although strongly correlated due to the underlying interpolating functions. Two-loop

and three-loop perturbation theory curves are shown for comparison.

small enough not to trigger a bulk phase transition. Since we use a constant extrapolation,

this procedure can be taken to define, within our errors, a g2(L) at a small but finite a/L.

The step-scaling procedure then leads to the continuum running from above to the fixed

point, also shown in Fig. 6. The statistical-error band is derived as in the approach from

below.

Finally we note that the exponent γ governing the approach to the infrared fixed point

in the SF scheme can also be extracted from the simulation data. Taking the log of Eq. (6),

we see that the quantity log [g2
� − g2(L)] should have a linear dependence on L with slope

−γ near the fixed point. Computing this quantity from our data, running from either above

or below the fixed point, we find γ = 0.13± 0.03, somewhat smaller than the three-loop SF

perturbative estimate of 0.286.
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Fig. 5. Continuum extrapolation of VI(r), for r/r0 = 1.5,0.6,0.5, on the left-hand side and for
r/rc = 0.9,0.4,0.3, on the right-hand side.

Fig. 6. The static potential. The dashed line represents the bosonic string model and the solid line the
prediction of perturbation theory as detailed in the text.

S. Necco, R. Sommer / Nuclear Physics B 622 (2002) 328–346 333

Fig. 3. Continuum extrapolation of r2cF(xrc), for x = 0.4, 0.5, 0.9, from top to bottom and of
r20F(xr0), for x = 0.5, 0.6, 1.5, from top to bottom. The data are from our new computations and
from [16]. Filled circles correspond to the naive value rI = r − a

2 instead of Eq. (2.4).

The continuum force is plotted in Fig. 4 using Eq. (2.5) to combine the two regimes of
r . Some data at finite β are included in the figure. In these cases we used our “bounds” on
s to estimate that the discretization errors are smaller than the statistical ones.
For large values of r , the force is expected to be given by a constant, the string tension,

plus a first universal [19] 1/r2 correction. Assuming this description to be valid already at
r = r0 yields the parameter free bosonic string model,

(3.5)F(r) = σ + π

12r2
, σ r20 = 1.65− π

12
,

which is in excellent agreement with our results for r ! 0.8r0. Note that in the same region
of r , excited potentials do not at all follow the expectations from an effective bosonic string
theory [20]. This suggests that the agreement with Eq. (3.5) is rather accidental. In any
case one would expect corrections to this formula to be negligible only for much larger r .
Nevertheless, Eq. (3.5) is a very good effective description of F(r) for 0.8r0 " r " 1.6r0.
At short distances the force may be obtained by an integration of the perturbative

renormalization group,

(3.6)F(r) =
CFḡ

2
qq(r)

4πr2
, CF = 4

3
,

−r
d
dr

ḡqq = β(ḡqq) = −
2

∑

ν=0
bν ḡ

2ν+3
qq , b0 = 11

16π2
, b1 = 102

(16π2)2
,

(3.7)b2 = 1
(4π)6

(

−3470+ 2519π2

3
− 99π4

4
+ 726ζ(3)

)

.
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2
qq(r)

4πr2
, CF = 4

3
,

−r
d
dr
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 Quenched test works Necco-Sommer 

Infinite volume, continuum extrapolated
limited r/ro range between 0.15 and 0.3

we try to run with the volume! 
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the V scheme with the central value eq. (2.36), one observes that at r = 0.3rc one
has αV(2loop) ! 0.28, αV(3loop) ! 0.9. This means that one is already at those
small distances outside the region where perturbation theory can be trusted. The
long-dashed line in Fig. 2.12 represents eq. (2.16) with the 2-loop RG solution for
αV; we decided not to use the 3-loop prediction due to the fact that the coupling is
very large at the distance r ∼ 0.15r0. As it was to be expected due to the missing
stability of this perturbative expression, it fails in describing the non-perturbative
potential.
A similarly bad perturbative expression is the direct expansion of the potential in
terms of αMS; for this comparison we used the matching equation eq. (2.25), with
S ′ = V , S = MS. For the same reason explained before, we decided to use the
2-loop RG prediction for αMS. The dotted line corresponds to the choice s = 1 in
eq. (2.25), while the dashed-dotted line corresponds to s = s0 (eq. (2.33)).

Figure 2.11: Test of eq. (2.25). The uncertainty in the combination µr0 has been
translated into an uncertainty for h(αSF(µ/s0)) and αqq(µ). The non-perturbative
values for αSF(µ) are constructed from the data of [15]. Errors are smaller than the
size of the symbols.

In summary, care has to be taken which perturbative scheme is adopted to de-
scribe the potential. However, perturbation theory does its best in the following
sense. As usual in an asymptotic expansion, one should first investigate the appar-
ent ”convergence” by comparing subsequent orders and checking that they decrease
significantly. If this is not the case, one is obviously outside the domain of applica-
bility of perturbation theory or has chosen a bad truncation (scheme). According
to this criterion the β-function in the qq-scheme may be trusted up to αqq ≈ 0.3.
Other truncations of perturbation theory for the potential are applicable for much
smaller values of the coupling only; for example, a scheme with a large 3-loop coef-
ficient such as V is of no use in the region α > 0.15. Therefore, perturbation theory

Running coupling from force and SF 
running nicely match for Nf=0 and Nf=2

we have difficulties to match the running 

of the two different couplings at Nf=12 
in the relevant coupling range



 Inside the conformal window   Nf=16 case study 

Nf=16 is most accessible to analysis

What is the finite volume spectrum?

How does the running coupling        evolve with L?

From 2-loop beta function

 

Nontrivial small volume dynamics in QCD turns into large volume
dynamics around weak coupling fixed point of conformal window

At small        the zero momentum components of the gauge field
dominate the dynamics: Born-Oppenheimer approximation

Originally it was applied to pure-gauge system   Luscher, van Baal

g2 (L)

g*2 ≈ 0.5

g2 (L)→ g*2 ,  as L→∞

g2 (L)



SU(3) pure-gauge model: 27 inequivalent vacua

Low excitations of Hamiltonian (Transfer Matrix) scale with 
will evolve into glueball states for large L

Three scales of dynamics   on smallest scale WF is localized on one vacuum
                                tunneling accross vacua on second scale
                                 over the barrier: confinement scale (third)                                

much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

�

i> j

V(Cb[µ(i)
b − µ

( j)
b ])− Nf

�

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.

main center elements at the new vacuum configurations with
complex values

Pj =
1
N

tr
�
exp(iCb

j Tb)
�
=

1
N

�

n

exp(iµ(n)
b Cb

j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
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methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
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how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
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and becoming independent of the volume as the coupling con-
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flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).
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for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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for S U(N). This implies that µ(n)
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pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
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periodic in the spatial directions.
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that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
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methods. We are particularly interested in the qualitative behav-
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ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluc-
tuations. With Nf flavors of massless fermion fields
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tree level Symanzik improve gauge action and staggered fermions with six stout
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for S U(N). This implies that µ(n)
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eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
to probe the running coupling inside the conformal window is a
pilot study to more comprehensive investigations of weak and
strong coupling conformal dynamics.

5.2. Running coupling and beta-function
Consider Wilson loops W(R,T, L), where R and T are the
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require continued investigations.
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We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].
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how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluc-
tuations. With Nf flavors of massless fermion fields
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like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
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for S U(N). This implies that µ(n)
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pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
to probe the running coupling inside the conformal window is a
pilot study to more comprehensive investigations of weak and
strong coupling conformal dynamics.

5.2. Running coupling and beta-function
Consider Wilson loops W(R,T, L), where R and T are the
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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there are now 8 degenerate vacua characterized by eight dif-
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lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
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ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.
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If there is strong coupling inside the conformal window, transition over the barrier into 
third regime (confinement in QCD) where this picture qualitatively changes

164  lattice simulation at β = 18



Nf=16 inside conformal window 
femto volume and tunneling volume
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                    Conclusions and Outlook
- Our focus shifted to Nf=10-16 range (and beyond?)
   Nf=12 chiral symmetry breaking and running coupling 
   from V(r) and F(r) and Wilson loops

- Nf=12 might be close enough to realize walking technicolor but
  otherwise (like the S-parameter) it is not unlikely to fail 

- What is the fate of the Nf=2 sextet model? Next   
  controversy is brewing? Walking Nf=2 sextet would be a 
  favorite candidate for composite Higgs (mass generation?)

- Zero mode dynamics important at weak coupling inside
  conformal window

- Reliable EW precision quantities (S/T/U) will be important to
  get accurately once we settle on the candidate model(s)


